Skip to main content

A DD4T.net Implementation - IFieldSet Extension Methods

In my previous post Model Builders, I was presenting a way to build strongly typed models starting from an DD4T IComponent object.

The little bit of code that I will be presenting today is a set of extension methods for the IFieldSet object, as seen in the code below:

    IFieldSet fields = component.Fields;
    IFieldSet metadataFields = component.MetadataFields;
    Device device = new Device(component)
    {
        Brief = fields.ResolveRichText("Brief"),

        Metadata = new Device.DeviceMetadata()
        {
            LegacyId = metadataFields.NumericValue("Legacy_Id"),
            ShortTitle = metadataFields.StringValue("Short_Title"),
            Products = metadataFields.KeywordValues("Products"),
            Status = metadataFields.KeywordValue("Status"),
            RelatedTools = ToolBuilder.Instance.Build(metadataFields.LinkedComponentValues("Related_Tools")),
            UpdateDate = metadataFields.DateTimeValue("Update_Date")
        }
    };


These extension methods make it extremely easy to read values from the field set, without having to make several extra checks like verifying for null values, checking if named field exists among the fields in the set. Moreover, the return values are empty string, 0, min date, etc. The idea is to stay away from null wherever possible. This will make life easier for the future, so we don't have to check for null before every call.

As such there are helper methods to read every kind of IField: string, numeric, date, Component Link and Keyword. Also for convenience, I added a helper method to resolve rich text values.

    public static string StringValue(this IFieldSet fieldSet, string fieldName)
    {
        return fieldSet == null ? string.Empty : StringValues(fieldSet, fieldName).FirstOrDefault<string>() ?? string.Empty;
    }


One nice feature of extension methods is that they can be called on 'null' objects. So even if the fieldSet is null, the extension method is still called, so we can perform the null check inside the extension method, rather than before calling it. The StringValue method returns either empty string if the original string fieldSet is empty, otherwise it delegates the call to StringValues, which returns an IList<string> values or empty list.

    public static IList<string> StringValues(this IFieldSet fieldSet, string fieldName)
    {
        return fieldSet == null || !fieldSet.ContainsKey(fieldName) ? new List<string>() : fieldSet[fieldName].Values;
    }


The StringValues method performs the actual checks for whether there is such named field in the set, and if so, it returns its string values.

All other methods are very similar:

    public static IList<DateTime> DateTimeValues(this IFieldSet fieldSet, string fieldName)
    {
        return fieldSet == null || !fieldSet.ContainsKey(fieldName) ? new List<DateTime>() : fieldSet[fieldName].DateTimeValues;
    }

    public static DateTime DateTimeValue(this IFieldSet fieldSet, string fieldName)
    {
        return fieldSet == null ? default(DateTime) : DateTimeValues(fieldSet, fieldName).FirstOrDefault<DateTime>();
    }

    public static IList<IFieldSet> EmbeddedValues(this IFieldSet fieldSet, string fieldName)
    {
        return fieldSet == null || !fieldSet.ContainsKey(fieldName) ? new List<IFieldSet>() : fieldSet[fieldName].EmbeddedValues;
    }

    public static IFieldSet EmbeddedValue(this IFieldSet fieldSet, string fieldName)
    {
        return fieldSet == null ? null : EmbeddedValues(fieldSet, fieldName).FirstOrDefault<IFieldSet>();
    }

    public static IList<IKeyword> KeywordValues(this IFieldSet fieldSet, string fieldName)
    {
        return fieldSet == null || !fieldSet.ContainsKey(fieldName) ? new List<IKeyword>() : fieldSet[fieldName].Keywords;
    }

    public static IKeyword KeywordValue(this IFieldSet fieldSet, string fieldName)
    {
        return fieldSet == null ? null : KeywordValues(fieldSet, fieldName).FirstOrDefault<IKeyword>();
    }

    public static IList<IComponent> LinkedComponentValues(this IFieldSet fieldSet, string fieldName)
    {
        return fieldSet == null || !fieldSet.ContainsKey(fieldName) ? new List<IComponent>() : fieldSet[fieldName].LinkedComponentValues;
    }

    public static IComponent LinkedComponentValue(this IFieldSet fieldSet, string fieldName)
    {
        return fieldSet == null ? null : LinkedComponentValues(fieldSet, fieldName).FirstOrDefault<IComponent>();
    }

    public static IList<double> NumericValues(this IFieldSet fieldSet, string fieldName)
    {
        return fieldSet == null || !fieldSet.ContainsKey(fieldName) ? new List<double>() : fieldSet[fieldName].NumericValues;
    }

    public static double NumericValue(this IFieldSet fieldSet, string fieldName)
    {
        return fieldSet == null ? 0 : NumericValues(fieldSet, fieldName).FirstOrDefault<double>();
    }


One method that stands out is the RichTextField extension method. This method makes use of DD4T's RichTextHelper:

    public static IList<string> ResolveRichTexts(this IFieldSet fieldSet, string fieldName)
    {
        return StringValues(fieldSet, fieldName).Select(x => x.ResolveRichText().ToString()).ToList();
    }

    public static string ResolveRichText(this IFieldSet fieldSet, string fieldName)
    {
        string value = StringValues(fieldSet, fieldName).FirstOrDefault<string>();
        return value == null ? null : value.ResolveRichText().ToString();
    }




Comments

Popular posts from this blog

Scaling Policies

This post is part of a bigger topic Autoscaling Publishers in AWS . In a previous post we talked about the Auto Scaling Groups , but we didn't go into details on the Scaling Policies. This is the purpose of this blog post. As defined earlier, the Scaling Policies define the rules according to which the group size is increased or decreased. These rules are based on instance metrics (e.g. CPU), CloudWatch custom metrics, or even CloudWatch alarms and their states and values. We defined a Scaling Policy with Steps, called 'increase_group_size', which is triggered first by the CloudWatch Alarm 'Publish_Alarm' defined earlier. Also depending on the size of the monitored CloudWatch custom metric 'Waiting for Publish', the Scaling Policy with Steps can add a difference number of instances to the group. The scaling policy sets the number of instances in group to 1 if there are between 1000 and 2000 items Waiting for Publish in the queue. It also sets the

Running sp_updatestats on AWS RDS database

Part of the maintenance tasks that I perform on a MSSQL Content Manager database is to run stored procedure sp_updatestats . exec sp_updatestats However, that is not supported on an AWS RDS instance. The error message below indicates that only the sa  account can perform this: Msg 15247 , Level 16 , State 1 , Procedure sp_updatestats, Line 15 [Batch Start Line 0 ] User does not have permission to perform this action. Instead there are several posts that suggest using UPDATE STATISTICS instead: https://dba.stackexchange.com/questions/145982/sp-updatestats-vs-update-statistics I stumbled upon the following post from 2008 (!!!), https://social.msdn.microsoft.com/Forums/sqlserver/en-US/186e3db0-fe37-4c31-b017-8e7c24d19697/spupdatestats-fails-to-run-with-permission-error-under-dbopriveleged-user , which describes a way to wrap the call to sp_updatestats and execute it under a different user: create procedure dbo.sp_updstats with execute as 'dbo' as

Toolkit - Dynamic Content Queries

This post if part of a series about the  File System Toolkit  - a custom content delivery API for SDL Tridion. This post presents the Dynamic Content Query capability. The requirements for the Toolkit API are that it should be able to provide CustomMeta queries, pagination, and sorting -- all on the file system, without the use third party tools (database, search engines, indexers, etc). Therefore I had to implement a simple database engine and indexer -- which is described in more detail in post Writing My Own Database Engine . The querying logic does not make use of cache. This means the query logic is executed every time. When models are requested, the models are however retrieved using the ModelFactory and those are cached. Query Class This is the main class for dynamic content queries. It is the entry point into the execution logic of a query. The class takes as parameter a Criterion (presented below) which triggers the execution of query in all sub-criteria of a Criterio